搜索
当前所在位置:首页 >> 百科

【女学生医院留观高清视频合集】通用3D机器视觉平台是不是伪命题?

发布时间:2025-09-13 13:19:17 作者:f 点击:9816 【 字体:

机器视觉是通用台不题工业制造向“智造”升级的重要一环。

从技术发展的机觉平趋势看,工业机器视觉正在经历从2D到3D的器视蝶变。

3D视觉的伪命价值在于,多一维度的通用台不题信息数据(主要是空间坐标),能满足对体积、机觉平女学生医院留观高清视频合集形状、器视距离等信息测量的伪命需要。并且,通用台不题3D视觉不容易受照明条件的机觉平影响,其成像精度远高于2D视觉,器视同时,伪命其快速处理信息的通用台不题能力也非2D视觉系统可比。

目前,机觉平得益于中国的器视供应链优势,3D机器视觉所需要的硬件,诸如光源、镜头、工业相机等,已经实现较高的国产替代率。

但在工业3D视觉软件领域,国内目前尚未出现一款现象级软件。

由于工业赛道足够细分,加上软件算法需要大量数据资源和深度行业know-how进行“喂养”,更多的3D视觉企业选择走定制化路线,这样更容易部署。

不少企业提出畅想:是否可以造一个通用的3D机器视觉平台,来满足各行各业的差异化需求?或者最大程度地减少定制化部署,以节约成本?

真实的应用场景,无形的快手男主播封号合集软件之墙

国内3D机器视觉技术已经开始落地。但从市场竞争层面看,3D机器视觉暂未出现明显的市场格局,多数企业正处于“铺市场、拼落地”的阶段,抢占市场的无形之战已经打响。

正面战场,行业案例是敲门砖,各家使出看家本领抢市场、推方案。 

后方战场,工艺算法是主要壁垒,各家在防护等级、稳定性、精度、扫描速度、数据传输等方面挖河道、修筑高墙。

这场战役要争夺的第一片高地,是以劳动力密集型为主要特征的制造业和物流行业。

“2018年开始,物流行业的客户率先进入规模化部署的状态,客户侧他们的时间跑出来的最快。”图漾科技CEO费浙平告诉雷峰网(公众号:雷峰网)。

3D机器视觉在制造业的应用,当前主要集中在质检场景,如高端制造业半导体、精密仪器等的产品外观缺陷质量检测。而在物流行业,3D机器视觉则应用到了引导机器人(机械臂)进行识别、分拣、上下料、拆码垛等工作。

这两大行业的特点是,产品相对标准,且具备自动化基础,这为开发通用3D机器视觉平台打下了基础。

然而要开发通用3D视觉平台还面临两个直观问题:市场接受度,以及技术如何解决差异化需求。

  • 市场接受度

不少业内人士向雷峰网表示:3D视觉的市场接受度越来越高。

两三年前,3D视觉创业者经常遭受来自投资人和客户的双重质问:“3D视觉到底是不是伪需求?”“2D视觉到底能不能解决?”

在经历技术落地与市场教育之后,许多工业企业已经认识到3D视觉带来的价值。在谈项目时,开始就指明“不要2D的,要3D的。”

这意味着,从市场需求看,工业企业已经开始认可3D视觉技术对行业产生的价值,并逐渐接受这种变化,开始愿意为新技术买单。

  • 技术如何解决差异化需求

工业企业关注的主要有两点:

产品功能性,即针对应用场景,找到最合适的3D视觉解决方案。

快速交付能力,即找到能够将其需求快速产品化,满足项目时间节点的产品。

从需求倒推至技术,市场需要的是稳定可靠、复用性强的产品,但现阶段的3D视觉产品同质化竞争非常严重,很难满足不同行业、同一行业不同领域的多样化应用场景需求。

换句话说,在3D视觉公司提供的产品与实际需求之间,还隔着一层需要逾越的厚障壁。

通用3D视觉平台之难

工业企业存在不同业务场景、生产环节,甚至同一场景不同工厂的需求都相互迥异。

设备具备非标性,通用性差,制造过程中的多品种、小批量,是许多工业企业的经营现状。

这导致许多企业不得不选择成本高昂、难以复用的定制化路线。

对于讲究生产柔性、灵活配置生产资源的中小企业,这种定制化产品无异于空中楼阁——好看管用,但用不起。

因此,市场本身需要一些能够提供可复用的通用型产品。

但现阶段,由于技术和成本的原因,工业3D视觉平台做到完全通用几乎不可能,只能将通用部份沉淀下来,尽量减少定制化比例,将可通用的部分做到极致。

简单来说,这类“有限制”的通用,算作是从定制化迈向通用的一种过渡路线。

即便是做这样一种“类通用”的软件平台,也需要产品性能以及行业Know-How的支撑,二者缺一不可。

一方面,这类软件算法平台,需要通过强大的底层算法与海量的数据构建,实现产品的“通用性”。即找出定位、识别、抓取、测量等场景中的共性,来解决缺陷检测、无序抓取等具体问题。

在此基础之上,技术供应商还要在功能与成本之间找到平衡点。

一位业内人士表示,“由于标准化产品需要适应各类非标场景,做到同时满足精度、速度、抗阳光性能、识别难度等需求,性能必须强大且有冗余,在此基础上,标准化产品还要兼顾成本和易用性。”

另一方面,3D机器视觉要在工业落地,行业Know-How极为重要。

在非标场景中提炼出标准化技术,需要既懂行业又懂技术的人才。不同场景的共性体现在何处,哪些模块可以复用,如何降低技术成本等等,没有对行业的深度认知与Know-How沉淀,很难做出与市场需求相匹配的产品。

除了产品和行业Know-How之外,还需要产业链上下游的密切配合。

通过技术满足多行业的多种应用,需要将核心技术凝结在标准化的产品中,包括在传感、感知、规划几个层面的同步提升,比如3D相机硬件、视觉软件、机器人软件。软硬件的兼容性难题、迭代速度等,也需要产业上下游合作。

通用难题待解,合作才能走得更远

从产业链分工来看,3D视觉行业已形成一条包括产品供应商、解决方案集成商、终端应用的产业化分工链条。

产品提供商,负责软硬件的研发,比如3D视觉传感器硬件和软件算法; 

解决方案集成商,直接面对终端各类应用场景的具体需求,针对各类应用算法进行二次开发,提供完整的解决方案。

集成商圈子的竞争,主要体现在开拓渠道,以及项目执行能力上。他们面对具体的落地应用,向上完成软硬件产品的集成,向下针对客户痛点拿出完整的解决方案,并将这种经验进行沉淀,而后找到同类场景,进行推广复制。

目前,国内3D视觉赛道,集成商数量众多,能否做到更快、更好地交付,决定着他们能否从中国2000多家视觉集成商中脱颖而出。

3D视觉存在大量分散的柔性化下游应用场景,由于方案定制化程度高,标准化难度大,常常是集成商与上游产品公司,根据某个客户需求,投入大量人力,长时间打磨定制化的解决方案,效率很低。

因此,对于集成商来说,一个能够实现硬件设备与软件算法的快速融合,做到与大部分主流机器人和相机、传感器,一键链接,即插即用,将复杂的视觉项目部署和交付变得简单易用的通用视觉软件平台,至关重要。

工业视觉核心软件系统的通用化,可以帮助集成商提高服务能力和解决用户复杂问题的能力,在行业内甚至跨行业进行解决方案的迁移与复制,大大缩短部署周期,节省人力物力投入。

不过,集成商的软硬件开发能力较弱,需要借助上游产品供应商的研发能力。

相较于为数众多的视觉集成商,3D视觉感知方案供应商,在3D视觉相关企业中占据少数。

于3D视觉方案提供商来说,核心竞争力在产品的功能性,包括对3D视觉传感器性能、成本、体积的优化,以及智能算法的优化。

不过,智能制造领域,非标场景众多,对于行业和应用场景理解的要求很高,目前供应商针对典型的场景以工艺包的形式做产品,但仍有大量场景需要根据用户的需求做开发或调整,想要缓解落地部署的压力,沉淀出一个通用的3D视觉平台,是解题思路之一。

好的通用视觉软件,既要能够帮助集成商在降低二次开发难度的同时,提高开发速度,帮助将客户的需求快速产品化,还要能较好地与行业解决方案集成。

图像处理软件是机器视觉系统的“大脑”,通过图像处理算法完成对被测物的识别、定位、测量、检测等功能。不过,工业系统具有各自封闭开发的特性,多平台和多品牌的多种产品的适配上容易相互“打架”。

因此,一个能与外部控制设备快速集成,增强产品扩展性,能适配多种主流协议,兼容主流3D相机(工业相机、结构光相机、TOF相机、激光相机)的工业软件十分重要。

总的来说,产品提供商的产品能力,与集成商的解决方案能力相辅相成,双方只有密切配合,才能组成一柄完整的利剑,刺穿行业痛点,满足客户的实际落地需求。

相较于2D视觉,3D视觉的技术栈更深,由于新的技术路线随时可能出现,目前还不能说哪一家已经形成绝对的技术领先。

在技术优势之外,产品功能性和快速交付能力,依旧是赛道比拼的火力集中点。

当下,3D视觉产品朝着标准化、通用化方向发展,存在一些客观难题,比如既懂3D视觉技术又懂工业场景的人才亟待补充,业内3D视觉标准、规范也相对空白等。

3D机器视觉的通用化之路固然困难重重,但如何在保证产品性能的同时,打造出相对通用的视觉软件平台,已是接来下各方竞争中的重要突破口。

雷峰网原创文章,未经授权禁止转载。详情见转载须知。

通用3D机器视觉平台是不是伪命题?

阅读全文
相关推荐

被低估的面壁:打造出不输 OpenAI 的 Scaling Law 曲线

被低估的面壁:打造出不输 OpenAI 的 Scaling Law 曲线
大约 1 个月前,马斯克所创办的 xAI 团队宣布开源 Grok-1——一个参数量为 3140 亿的 MoE 大模型。从参数量来看,Grok-1 超越了 70B 的 LLaMA 2,是当前开源模型中最 ...

谷歌超 25 亿美金收购 Character AI;曝英伟达 AI 芯片遇重大设计缺陷,数百亿美元订单将受影响丨AI情报局

谷歌超 25 亿美金收购 Character AI;曝英伟达 AI 芯片遇重大设计缺陷,数百亿美元订单将受影响丨AI情报局
今日融资快报谷歌超 25 亿美金收购 Character AI 并收编团队Character.AI 在官方博客 C.AI 上宣布了与 Google 的并购协议。谷歌已同意支付模型授权费,并聘请其核心创 ...

全球首发!无问芯穹发布千卡规模异构芯片混训平台,筑基面向MxN生态格局的AI Native基础设施

全球首发!无问芯穹发布千卡规模异构芯片混训平台,筑基面向MxN生态格局的AI Native基础设施
“打开水龙头前,我们不需要知道水是从哪条河里来的。同理,未来我们用各种AI应用时,也不会知道它调用了哪些基座模型,用到了哪种加速卡的算力——这就是最好的AI Native 基础设施。”7月4日,在20 ...

具身智能构型之争:人形、灵巧手、双足,谁是最终 C 位?

具身智能构型之争:人形、灵巧手、双足,谁是最终 C 位?
作者 | 赖文昕编辑 | 陈彩娴上个月初,上海世界人工智能大会WAIC 2024)展出人形机器人「十八金刚」引爆会场。一个月后,世界机器人大会WRC 2024)又即将在北京拉开帷幕。再回到 5 月,在 ...

异构智能体自主协作,大模型扮演了什么角色?

异构智能体自主协作,大模型扮演了什么角色?
2700 年地球巨型的垃圾场上,仅剩下机器人瓦力重复着收集、压缩垃圾的每一天,枯燥日常中,它诞生了自我意识,对人类影像画面中交流产生好奇、感受到自己作为最后一个机器人的孤独。直至一个更聪明、更敏捷的探 ...

全球首发!无问芯穹发布千卡规模异构芯片混训平台,筑基面向MxN生态格局的AI Native基础设施

全球首发!无问芯穹发布千卡规模异构芯片混训平台,筑基面向MxN生态格局的AI Native基础设施
“打开水龙头前,我们不需要知道水是从哪条河里来的。同理,未来我们用各种AI应用时,也不会知道它调用了哪些基座模型,用到了哪种加速卡的算力——这就是最好的AI Native 基础设施。”7月4日,在20 ...

WAIC 最具技术想象力成果发布:新架构面壁小钢炮又一次验证并加速了面壁定律

WAIC 最具技术想象力成果发布:新架构面壁小钢炮又一次验证并加速了面壁定律
2020 年,1750 亿参数规模的 GPT-3 问世。彼时,完整训练 1750 亿参数的模型需要 3.14E11TFLOPS)的每秒浮点运算量。如果使用英伟达 80GB A100 GPU16位浮点算 ...

炒菜机器人公司橡鹿科技再获京东近 2 亿元投资;袁进辉公司硅基流动新增两位联创,获哈勃智谱 AI 等入股丨AI情报局

炒菜机器人公司橡鹿科技再获京东近 2 亿元投资;袁进辉公司硅基流动新增两位联创,获哈勃智谱 AI 等入股丨AI情报局
今日融资快报人工智能初创公司Cohere融资5亿美元,寻求与OpenAI竞争人工智能开发商 Cohere 在新一轮融资中筹集了 5 亿美元,使其成为该领域全球最有价值的初创公司之一,这也增强了这家加拿 ...

Agent 要被吃进大模型了

Agent 要被吃进大模型了
今天凌晨,奥特曼突然发文宣布推出自家最新的 o 系列模型:满血版 o3 和 o4-mini,同时表示这两款模型都可以自由调用 ChatGPT 里的各种工具,包括但不限于图像生成、图像分析、文件解释、网 ...

AI 手术平台 Caresyntax 获 1.8 亿美元融资;智元发布 5 款商用人形机器人,开发者还能“0元购”丨AI情报局

AI 手术平台 Caresyntax 获 1.8 亿美元融资;智元发布 5 款商用人形机器人,开发者还能“0元购”丨AI情报局
今日融资快报AI手术平台Caresyntax获1.8亿美元C+轮融资caresyntax致力于促进特定医疗环境如外科手术、介入放射检查及产科)更加智能和安全。其推出的解决方案利用物联网、数据分析和人工 ...

视频生成赛道再添“猛将”,智谱清影正式上线

视频生成赛道再添“猛将”,智谱清影正式上线
年初Sora横空出世,验证了Scalling Law在视频生成方面的有效性。但Sora始终止步于公开的60秒demo,产品落地计划迟迟未有公开。随后的半年时间,不少“玩家”继续在AI视频生成赛道展开角 ...

AI 搜索向左,搜索 OG 向右

AI 搜索向左,搜索 OG 向右
作为 AI 世界的领头羊,OpenAI 发布的 SearchGPT 再次给 AI 搜索加了一把火。这把火原本由 Perplexity 引燃,在美国烧及 Google 和微软,在中国引发了百度、360 ...
返回顶部